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This research aims to investigate the feasibility of creating a fixed-point implementation
of a computation based on static analysis techniques. An underlying theory for fixed-point
computations has been developed, and a software tool written to implement much of that
theory.

This paper presents a brief overview of the theory, which is based on determining the
semantics of the individual bits of each fixed-point value in the computation.

Following the theoretical overview, some details of the software tool are provided, empha-
sizing both the controls available to an algorithm implementor to guide the creation of the
fixed-point implementation of the computation and the heuristic choices which are embed-
ded in the tool’s operation. The software tool provides several options for what output is
generated, these options are described briefly.

Finally, we discuss the quality of fixed-point implementations our tool generates for several
interesting computations and describe the challenge of statically estimating truncation error.
We provide a quantitative comparison between the software tool’s estimates of truncation
error and actual truncation error observed.

I. Introduction

IN computational environments where the cost of floating-point circuitry is prohibitive, such as deeply embedded
computing and reconfigurable computing, computations requiring values from the mathematical field of reals

can often be performed using fixed-point representations. However, designing fixed-point implementations of com-
putational algorithms has a history of being a difficult, time-consuming and error-prone task which can result in
sub-optimal implementations due to unnecessarily high computational error or even incorrect results.

In conjunction with the Field Programmable Processor Array (FPPA) project,1 the software tool SIFOpt (Sign,
Integer, Fraction-based Optimizer) has been developed which helps algorithm designers create fixed-point imple-
mentations of computational algorithms. SIFOpt reads an algebraic description of the computation. The user must
annotate this algebraic description with information about the fixed-point encoding of the computation’s arguments.
A static analysis of the computation is then performed and a fixed-point implementation for the computation is
determined. Values which a fixed-point implementation designer would need to determine by hand (in the absence
of a design tool) are computed by SIFOpt, including: scaling factors for computed variables, alignment operations
for additions and subtractions, rescaling operations for multiplications and determining optimal representations for
the constants which are used in the computation.

A. Fixed-Point Implementations of Computational Algorithms
A fixed-point implementation of a computational algorithm has something of a dual nature. At run time, integer

computations are performed on integer values. However, at design time a scaling factor is associated with each value
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Table 1 Effect of changing the scaling factor associated with a signed 16-bit value.

Scaling factor: 2−9 2−8 2−7

Maximum: 0111111.111111111 01111111.11111111 011111111.1111111
(63.998) (127.996) (255.992)

Minimum: 1000000.000000000 10000000.00000000 100000000.0000000
(–64) (–128) (–256)

Delta: 0000000.000000001 00000000.00000001 000000000.0000001
(0.00195) (0.00391) (0.00781)

that will be computed at run time. Thus the integer run time values represent real values, which are determined by
multiplying a run time integer value with the design time scaling factor associated with it.

The choice of the scaling factor for each computed value is left for the algorithm implementor to determine. In a
fixed word length computational environment, the choice of a particular scaling factor establishes both the range of
real values that can be represented (the product of the run time integer and the scaling factor) and the granularity of
the values that are represented. As the scaling factor is increased, value range increases and granularity decreases.
As the scaling factor is decreased, value range decreases and granularity increases. Table 1 illustrates this effect for
changes in the scaling factor associated with a signed 16-bit value.

At run time, if the result of a computation is outside the value range established by the choice of scaling factors,
an overflow condition exists. The consequences of the overflow condition range from loss of accuracy in the result
to incorrect results. On the other hand, if a non-zero run time value falls below the granularity of the computed value
(which is established by the choice of scaling factors) and becomes zero, we say that an underflow condition exists.
Underflow conditions tend to result in loss of granularity in a result (loss of accuracy), but can also lead to incorrect
results.

The primary challenge for the algorithm designer is to assign scaling factors to each computed value which are
as small as possible yet not so small that they result in overflow errors at run time. In addition, the choice of scaling
factors affects the operations required to align values for addition operations, and the operations required to prescale
values for multiplications (in computational environments where the result of a multiplication are not as wide as the
sum of the widths of the multiplicands.)

B. Related Research – Dynamic Approaches
Recent research into creating fixed-point implementations of computations have focused on dynamic approaches.

With a dynamic approach, the computation is implemented in a floating-point environment and the computed values
are “instrumented” to collect statistics about their run time values.

Sample data sets are then run through the instrumented versions of the computation and run time statistics are
gathered. The run time statistics are then used to assign scaling factors to each computed value. This step acts as a
training step which is used to “learn” the scaling factors to use for each computed value.

Researchers from Seoul National University,2 The University of Toronto3 and Aachen University of Technology4

use this approach to perform automatic floating-point to fixed-point conversion, taking a C program which includes
floating-point variables and constants and generating a C program which uses only integer variables and constants.

Researchers at the University of Washington5 and MIT6 use this approach to minimize the data path width of
FPGA and ASIC implementations of fixed-point computations.

1. Weaknesses of Dynamic Approaches
We see several weaknesses of this type of approach. One is the obvious dependence of the results on the training

set used to determine the fixed-point implementation. Of more concern, however, is that the scaling factors are
determined based on floating-point values which are not subjected to fixed-point truncation errors. This has the
potential to lead to less than optimal fixed-point implementations.

The worst example of floating-point to fixed-point mismatch we have encountered was in analyzing our “division
by repeated multiplications” algorithm7 using floating-point methods. For a 16-bit by 16-bit division, using 16
iterations of the algorithm’s loop, the floating-point analysis indicates that the worst-case absolute error will occur
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when computing 65535
1 . The floating-point analysis indicates that the algorithm will compute the value 41426 (absolute

error of 24109) for the answer, while our fixed-point implementation computes a value of 65519 (absolute error of
16) for the answer. The difference between these values was found to be due to the truncation error of the fixed-point
implementation. This is an unusual case, but it illustrates the mismatch which can occur between a floating-point
analysis of an algorithm and a fixed-point implementation.

II. The Static Approach
The static approach we use is based upon a design-time notation which tracks the partitioning of the run-time

integer values into Sign, Integer and Fraction (SIF) regions. Taken together, the Integer and Fraction regions of a
run time value are similar to the mantissa region of a floating-point value representation, so they (the Integer and
Fraction regions together) are referred to as the mantissa region.

The user is required to provide SIF partitionings for any values which are arguments to the computation. Com-
putational arguments lie at the bottom of the parse tree for the computation’s description. Note that any values which
are “recirculated” (i.e. a value computed by the computation which is also used to compute that value) must also be
provided with SIF partitioning values. The user can optionally specify SIF partitionings for values that are com-
puted (internal values in the computation.) The primary task of the SIFOpt tool is to determine SIF partitionings
for the result values of every mathematical operation performed by the computation.

A. SIF Partitionings
An SIF partitioning is a notation which specifies the semantics of the individual bits of run time integer values.

At run time, the bits of an integer value can act as replicated sign bits, integer-value bits, fractional-value bits or
unused right-padding bits.

This notation originated with researchers working at Kansas State University and Sandia National Laboratories
in the late 1970s under the name Block Floating Point notation (BFP).8 Members of our group were exposed to the
notation at Sandia National Laboratories and suggested it as a starting point for a fixed-point design tool.

Though the notation itself remains the same, the theory underlying the original work has been completely reworked
and reintroduced with the name “SIF partitionings” in.9

The syntax used for SIF partitionings is described by the following specification. Characters in single quotes
are literal characters, characters inside square brackets are optional, and a horizontal bar separates list entries of an
exclusive-or choice between a list of characters.

‘(’[‘+’|‘-’]vS‘/’vI ‘/’vF ‘)’[‘^’vn]
• The optional ‘+’ or ‘-’ character before the value of vS indicates if the run time value is known to be positive

(in the case of a ‘+’) or negative (in the case of a ‘-’.)
• vS is a non-negative integer indicating how many of the run time value’s bits (beginning from the most-

significant bit) are replicated sign bits.
• vI is a non-negative integer indicating how many of the bits following the replicated sign bits represent integral

information.
• vF is a non-negative integer indicating how many of the bits following the integral bits represent fractional

information.
• vn is an optional integer value parameter which indicates an additional shift of the binary point by vn positions.

(If vn < 0, the binary point is shifted to the left, otherwise it is shifted to the right.)
In the remainder of the body of this paper (not in section headings) we shall use the term “SIF” to mean an “SIF

partitioning” as defined above.
Given an SIF and the word length of the value it is associated with, we can determine both: how many of the

integer’s bits are unused, right-padding bits, and the scaling factor associated with the value.

B. Operations on SIF Partitionings
We view SIFs as a data type that the SIFOpt tool manipulates to produce a fixed-point implementation of the

requested computation.
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Fig. 1 Operations which move the boundary of the mantissa region.

Given any data type, it is useful to identify the operations which can be performed on values of that type. The
fundamental operations which can be performed on SIFs have been identified and discussed thoroughly in,9 an
overview is provided here.

The SIFOpt tool provides the algorithm designer with the ability to insert design knowledge into the process
of determining SIFs for computed values by annotating the description of the computation with functions which
represent performing each of the SIF operations described in the following sections.

1. Moving the Boundaries of the Mantissa Region
There are four operations on SIFs which adjust a boundary of the mantissa region. These operations are not

usually required for implementing a computation, and should only be used in “extraordinary circumstances” to
represent designer knowledge of non-computational behaviors. An illustration of each of these operations can be
found in figure 1.

Expand Left (exl) – moves the boundary between the sign bits and the mantissa to the left, causing some bits
which were sign bits to be interpreted as mantissa bits.

Expand Right (exr) – moves the boundary between the mantissa region and the unused (padding) region to the
right, causing some bits which were interpreted as unused padding bits to be interpreted as mantissa bits.

Truncate Left (trl) – moves the boundary between the mantissa region and the sign region to the right, causing
some bits which were interpreted as mantissa bits to be interpreted as sign bits.

Truncate Right (trr) – moves the boundary between the mantissa region and the unused (padding) region to the
left, causing some bits which were interpreted as mantissa bits to be interpreted as padding bits.

2. Moving the Binary Point
Moving the boundary between the integer and fractional regions has the effect of multiplying and dividing the

real value represented by the run time integer by powers of two, with no run-time operation. Note that the binary
point can lie outside the mantissa region, and even beyond the edge of the machine word.

Shift Binary Point Right (sbpr) – shift the location of the binary point to the right. The value mapped to by the
integer and scaling factor is divided by 2n.

Shift Binary Point Left (sbpl) – shift the location of the binary point to the left. The value mapped to by the
integer and scaling factor is multiplied by 2n.

3. Run time Shift with SIF Partitioning Adjustment
The SIF operations presented above are all design time boundary manipulations which do not cause any run time

operation to be performed. At run time, the “shift” operations play an important role in fixed-point implementations.

Fig. 2 Operations which move the binary point location.
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Fig. 3 Operations corresponding to run-time shift operations.

Any run time shift of a value must be accompanied by an adjustment of the value’s SIF, or the real value mapped
to by the run time integer and the non-adjusted SIF will not correspond to the computation being performed.

When the integer value is right shifted at run time, we can interpret the result as either adding sign bits (binary
point shifts with integer), or dividing by a power of two (binary point retains its previous location.) When the integer
value is shifted left at run time, we can interpret the result as either removing sign bits (binary point shifts with the
integer) or as multiplying by a power of two (binary point retains its original location.)

Add Sign Bits (asb) – All boundaries are shifted the same amount as the run time shift. The real value represented
by the integer stays the same (up to truncation error.)

Divide By Shifting (dbs) – The location of the binary point is held constant while the mantissa boundaries are
shifted along with the run time value. The real value represented by the integer is divided by 2n.

Remove Sign Bits (rsb) – All boundaries are shifted along with the run time value. The real value represented
by the integer stays the same (up to overflow error.)

Multiply By Shifting (mbs) – The location of the binary point is held constant while the mantissa boundaries are
shifted along with the run time value. The real value represented by the integer is multiplied by 2n.

III. SIFOpt
The SIFOpt software tool creates fixed-point implementations based on a high-level description of the com-

putation that is to be performed. This description must have annotations specifying the fixed-point formats of the
computation’s inputs. In addition, the designer can annotate the high-level description with information that is specific
to the run time data on which the computation will be performed.

SIFOpt performs a static analysis of the described computation, extracting a computation tree and determining
the following:

• Scaling factors (in the form of SIFs), (integer) value ranges and the estimated maximum absolute error
(truncation error) for each computed value

• Alignment operations required for addition and subtraction operations
• Rescaling operations required for multiplications
• Optimal integer equivalent values for constants
SIFOpt can produce several types of output. The default output is to print the computation tree annotated with

the computed fixed-point information. SIFOpt can also produce integer-only C code. Finally, SIFOpt can produce
code which will use a C++ mixed-point class which has been created as part of this work (and which will be
described later in this chapter.)

IV. Description of a Numerical Computation
An algebraic language has been implemented in which the algorithm designer specifies the numerical computation

to be performed. This language supports two kinds of named values: variables and constants. Named values must
be declared before (or when) they are used. Variables which are input values of the computation must be annotated
with SIFs, and can optionally be annotated with value range information. Variables representing computed values
in the computation can be annotated with SIFs and/or value ranges as well. This allows the algorithm designer to
specify information about run time dependencies which cannot be determined by the static analysis.
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Fig. 4 Example SIFOpt input file for polynomial evaluation. This version puts the whole computation on one line,
mimicking the form of the mathematical equation.

Fig. 5 Example SIFOpt input file for polynomial evaluation. This version breaks the commands into simple
multiply/accumulate-like steps.

As a simple example, if we wish to compute the value of the polynomial:

−0.005643x5 + 0.08863x4 + −0.4016x3 + 0.2862x2 + 0.8612x + 0.01593

we might first apply Horner’s scheme to get:

(((((−0.005643x) + 0.08863)x + −0.4016)x + 0.2862)x + 0.8612)x + 0.01593

Assuming the argument is an unsigned 16-bit value with a scaling factor of 2−13 ranging over the real value 0 to 2π ,
figures 4 through 6 present three possible SIFOpt input files which will yield fixed-point implementations of the
calculation.

A. Dependency Checks
TheSIF, value range and word length values entered by the user are checked for violations of known dependencies

between them. The following conditions cause warnings to be printed, but allow optimization to proceed.
• The user specified a range minimum that is 0 or greater, and an SIF with S-Sign �= ‘+’.
• The SIF specified by the user is suboptimal for the value range specified by the user. This is the case when

there is an SIF with fewer mantissa bits than the provided SIF which can represent the entire specified value
range. In this case, analysis of the algorithm continues using the suboptimal range and SIF.

The following conditions cause an error message to be printed, and SIFOpt exits after parsing the rest of the
input file:

• The user specified an SIF with S-Sign = ‘+’ and a value range with a minimum value less than zero.
• The user specified an SIF and a value range which are incompatible. This is the case if the maximum value

range representable by the SIF is a (strict) subrange of the provided value range.

Fig. 6 Example SIFOpt input file for polynomial evaluation. This version uses the ability to associate symbolic
names with real values, simplifying the representation of the calculation.
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• The user specified an SIFwith more bits than the word length specified, or more than the default word length,
if none is specified.

All warning and error messages inform the user of one possible correction for the detected violation. When
possible, the suggested correction preserves the scaling factor of the user-provided SIF value.

B. Expressions
Expressions available to the algorithm designer are similar to algebraic expressions available in most high-level

languages.

1. Binary Mathematical Operators
SIFOpt provides the three binary mathematical operators: ‘+’, ‘-’ and ‘*’, which provide addition, subtraction

and multiplication, respectively. The ‘*’ operator has higher precedence than the ‘+’ and ‘-’ operators. Arguments of
a string of ‘+’and ‘-’operators are grouped left-to-right. Parenthesis (‘(’, ‘)’) can be used to group binary operations
for clarity or to override precedence. Division will be added in the near future.

2. Unary Mathematical Operator
The ‘-’ unary negation mathematical operator is also provided, and has higher precedence than multiplication. At

this moment it is only available for literal real values.

3. Word Length Specification Operator
The word length specification operator “@n” is provided as a postfix operator, and has higher precedence than

unary negation.

4. Built-in Functions
All of the unary SIF operations introduced in the earlier section “Operations on SIF partitionings” (exl, exr,

trl, trr, sbpl, sbpr, asb, rsb, dbs and mbs) are available in the computation description language.
In addition, the functions C(expr) and NC(expr) are provided to specify that the outermost binary operation of

the enclosed expression will result in a carry-out or will not result in a carry out, respectively.

V. Static Analysis
SIFOpt creates a fixed-point implementation of a computational algorithm by performing a static analysis of

the computation, which is specified by a SIFOpt input file. An “optimization tree” (which mirrors the input file’s
parse tree) is constructed by performing a post-order traversal of each statement in the parse tree. All values in the
algorithm description must have SIFs associated with them before they are used in an expression. This limits the
type of computations which can be input to SIFOpt to computations which have parse trees that can be expressed
as directed acyclic graphs (DAGs).

A. Single Assignment
Single assignment1 languages10 meet the requirement that the input algorithm be expressible as a DAG. The input

language for SIFOpt now restricts the types of algorithms specified to single assignment algorithms.

B. Propagation of SIF Partitionings and Value Ranges
The most fundamental task that SIFOpt performs is to computeSIFs and value ranges for the results of individual

mathematical operations. These result values are computed from the SIFs and value ranges of the arguments of each
mathematical operation by performing a post-order traversal of the computation tree.

Value ranges are propagated via Interval Arithmetic11 by default. An option is available to cause SIFOpt to
exhaustively compute value ranges for nodes of the computation tree which have common variables in the two child
trees (in these cases the range determined using Interval Arithmetic can be sub-optimal.) Exhaustive computation is

1As the name implies, single-assignment languages allow variables to be assigned to only once.
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not in general computationally feasible, but we have found it useful for the size of the problems we are currently
addressing.

Using these methods of value range propagation, computed values will not overflow if the input values stay within
the bounds specified by the designer. However, computed values may be subject to unnecessarily reduced precision.
Reduced precision can be caused by correlations between the run time input values, or dependencies between values
in the computation tree (if interval arithmetic is used to compute value ranges.) These problems can be alleviated
by application of the C() and NC() functions or specification of value ranges for result values, but use of these
language features make run time overflow errors possible.

1. Placement of the Result within the Word Length
In cases where there is flexibility in the placement of the result value within the result word, SIFOpt aligns

operands using the following heuristics.
For addition (and subtraction) the heuristics used are:
1. If there is only one alignment which minimizes truncation error in the result, that alignment is used.
2. Otherwise, if the operands can be aligned by shifting only one of the operands, only that operand is shifted.
3. Otherwise (both operands have to be shifted to align the binary point and there are multiple ways this can be

achieved) the number of sign bits in the result are maximized.
Stated simply: the first priority is minimizing the number of shift operations which must occur. If both arguments must
be shifted, the priority is to maximize the number of sign bits in the result. Maximizing (as opposed to minimizing)
the number of sign bits in the result is a second priority (to minimizing the number of shifts) because any unexpected
overflow which might occur will not be immediately harmful if there are additional sign bits into which the result
value can overflow.

For multiplication, the heuristics used are:
1. If there is only one prescaling which minimizes truncation error in the result, that prescaling is used.
2. Otherwise, if the values are already appropriately scaled, then no scaling operations are applied.
3. Otherwise if the values can be prescaled by shifting only one of the multiplicands, then that multiplicand is

prescaled to be as small as possible while minimizing the number of truncated mantissa bits.
4. Otherwise both multiplicands are prescaled to be as small as possible while minimizing the number of

truncated mantissa bits.
The first priority of the heuristic for multiplication is to minimize the number of shift operations required for
prescaling. The second priority is to maximize the number of sign bits in the result.

For addition, the static analysis stores information about the alignment operation implemented and how much
flexibility there was in the decision about how to align the addends in the addition tree node. This allows the optimizer
to re-visit the node and request a change in the alignment operation(s), in an attempt to minimize the number of
shift operations performed overall by the implementation. However, this feature is currently “stubbed out” in the
SIFOpt code and has no effect.

For multiplication, the first case may occur in such a way that we can preserve one more bit in one multiplicand
than in the other. A careful analysis of the accumulated truncation amount values for each multiplicand might indicate
a preference for truncating the extra bit from one of the multiplicands, but we felt that this analysis might be more
misleading than helpful. Instead, we have made the arbitrary choice to preserve an extra bit in the left hand argument
of the multiplication.

C. Constants
Constant values in the computation can be optimized quite effectively. Rounding is performed on all constants.
All constant values, whether literal values (e.g. “3.14”) or named constants (knowns) can be followed in a SIFOpt

algorithm specification by an SIF that specifies the format to be used. In particular, the number of sign bits to be
used can be specified. If the user specifies an SIF for a constant value, and the requested value for the number of
sign bits is smaller than the number SIFOpt determines using the heuristics to be described below, then SIFOpt
ignores the SIF and optimizes the constant independently of the following heuristics. Therefore, when used with
constant values, providing a vS value of zero tells SIFOpt to compute an optimal SIF for the constant.
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1. Optimal SIF Partitioning for a Constant
Given an SIF and a word length, we define their optimal SIF to have the minimum number of sign bits possible

(1 if the constant is negative, 0 otherwise), and as many unused bits as there are 0’s to the right of the right-most 1
in the constant’s (rounded) integer representation within the given word length.

2. Optimizing Constant Values for Addition and Subtraction
Ideally, when we wish to compute the sum of a constant and a variable we will not be required to shift the variable

before performing the addition. When this is possible, the value computed for the constant will have the same scaling
factor as the variable’s scaling factor, and will use only as many bits of resolution as are available in the machine
word.

Using this heuristic it is possible that the desired constant will fall outside both the range of significant bits for
the variable and the size of the word length, and thus become 0. In this case a warning is printed. In cases such
as this, the philosophy followed with SIFOpt is that the designer should be alerted to the fact that they’ve added
a value having only n fractional bits with a value whose most significant bit lies more than n places to the right
of the binary point. However, a means is provided for the designer to override the way SIFOpt normally works.
As noted earlier in the section “Constants”, an SIF can follow any constant value, and setting the number of sign
bits to 0 in that SIF tells SIFOpt to compute the optimal number of sign bits on its own. Providing an SIF for
the constant is the only way to cause a variable to be left shifted (remove sign bits) when adding with a constant
value.

There are two cases which can cause sign bits to be added to the variable before summing with a constant. First
is the case in which sign bits must be added for overflow protection. Second is the case in which the constant value
extends to the left of the variable and the variable’s sign bit region. This case occurs when equation 1 holds. In both
cases, the variable is right-shifted as little as possible. The decision to shift as little as possible made it easy to get
the maximum resolution in the fixed-point representation of the constant.

log2(var) < log2(const) (1)

3. Optimizing Constant Values for Multiplication
Multiplication by constant values is implemented by first computing an optimal SIF for the constant value (up to

32 bits) then using the heuristics stated previously to determine any required rescaling operations. Recall however,
that an arbitrary decision was made that when the number of mantissa bits allowed in the multiplicands is odd, an
extra bit would be removed from the right-hand argument of the multiplication operator.

When one of the arguments is a constant we know the values of all of the bits in its integer representation, therefore
we can optimize the choice of which argument has extra mantissa bit preserved by checking the actual value of the
bit which might get truncated from the constant and truncating it if it is a zero. On the other hand, if the bit is a one
in the constant, SIFOpt chooses to preserve it on the philosophy that it is better to preserve a known 1 bit then to
preserve a bit which may or may not be a 1.

This leads to the second optimization. If we detected that the constant’s least significant preserved bit is a zero,
we should check the next-least significant bit, and if it is also a zero then preserve an additional bit from the variable,
and so on.

When no rescaling is required, the constant will be implemented so that the result has the maximum number of
sign bits possible.

D. Estimating Truncation Error
The static analysis performs one additional function: estimation of truncation error. With every right shift, the

maximum truncation error is assumed to occur (i.e. it is assumed that all truncated mantissa bits held values of
1.) The truncated bits are scaled by the scaling factor, so truncation error is computed in terms of the real values
being computed. One further assumption must be made: for multiplications, the truncation estimate assumes that
each multiplicand is the maximum of its value range. This results in the largest magnification of the accumulated
truncation errors, leading to pessimism in the computed results.
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VI. SIFOpt Output
SIFOpt can generate three types of output. The first type of output is comprised of information about the fixed-

point implementation that has been computed. The second type of output is integer-only C code. The third type is
C++ code which uses our “mixed-point” C++ class.

A. Fixed-Point Implementation Information
The fixed-point implementation information output from SIFOpt is composed of two sections.
The first section displays the optimization tree created by SIFOpt. Every node in the computation is displayed

on one or more lines, indented in tree hierarchy. Variable declarations display the SIF and real value range that was
either declared or determined for the variable. Known declarations display their real value, their optimal integral
value and optimal SIF. Expressions display information about the computation being performed, including SIF,
value range, absolute error, information about operator alignment and prescaling operations implemented, clipping
and padding information.

A short extract of the optimization tree output from SIFOpt follows. This extract covers the statement
out1 = w2 * in1 + out0; from a convolution implementation. This is not verbatim output from SIFOpt, some
cleanup has been performed by hand. The values placed between balanced ‘\’ and ‘/’ characters are the estimated
maximum truncation error amounts.

Assignment
Variable - out1: (1/0/31)ˆ-1, [-0.499985:0.499985] \1.52583e-06/

=
Operation: AddSub - k = 0, kmin = 0, kmax = 0
BinaryOp: ‘+’ result is: (1/0/31)ˆ-1, [-0.499985:0.499985] \1.52583e-06/

Operation: Mult
BinaryOp: ‘*’ result is: (1/0/31)ˆ-1, [-0.349988:0.349988] \1.52583e-06/

Known - w2 = 0.35 as 45875 = 0xb333 in 32 bits with (+16/0/16)ˆ-1 =
0.349998 \1.52588e-06/

ShiftResize - m_delta = 0, m_shift = 16 (17/0/15),
[-0.999969:0.999969]

Variable - in1: (1/0/15), [-0.999969:0.999969]
Variable - out0: (2/0/30)ˆ-2, [-0.149997:0.149997]

After the optimization tree, SIFOpt prints a list of the variables in the computation with: the SIFs, the range of
real values that can be represented, the range of values of the underlying integer (optional) and maximum estimated
absolute error values (if non-zero). The output from the convolution example is shown below.

in0 - (1/0/15) [-2147418112:2147418112]->[-0.999969:0.999969]
in1 - (1/0/15) [-2147418112:2147418112]->[-0.999969:0.999969]
in2 - (1/0/15) [-2147418112:2147418112]->[-0.999969:0.999969]
in3 - (1/0/15) [-2147418112:2147418112]->[-0.999969:0.999969]
out0 - (1/0/30)ˆ-2 [-1288463974:1288463974]->[-0.149997:0.149997] \1.52583e-06/
out1 - (1/0/31)ˆ-1 [-2147418112:2147418112]->[-0.499985:0.499985] \3.05166e-06/
out2 - (1/0/31) [-1825302119:1825302118]->[-0.849973:0.849973] \4.57796e-06/
out3 - (1/0/31) [-2147418113:2147418111]->[-0.999969:0.999969] \6.10403e-06/

B. Integer-only C Code
The command-line switch “-C” can be used to tell SIFOpt to generate integer-only C code. The output from the

convolution example is given below.

int in0;
int in1;
int in2;
int in3;
int out0 = (39322 * ((in0) >> 16));
int out1 = ((45875 * ((in1) >> 16)) + ((out0) >> 1));
int out2 = ((((45875 * ((in2) >> 16))) >> 1) + ((out1) >> 1));
int out3 = ((((39322 * ((in3) >> 16))) >> 2) + out2);
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C. Mixed-Point C++ Code
The command-line switch “-M” can be used to tell SIFOpt to generate output that targets my “mixed-point”

C++ class. The output has been slightly cleaned up to remove some redundant parenthesis.

mixedpoint in0;
mixedpoint in1;
mixedpoint in2;
mixedpoint in3;
mixedpoint out0 = (mixedpoint::constant( 0x999a, -18, 0.15, 0) * (in0 >> 16));
mixedpoint out1 =
(mixedpoint::constant( 0xb333, -17, 0.35, 0) * (in1 >> 16)) + (out0 >> 1);

mixedpoint out2 =
((mixedpoint::constant( 0xb333,-17,0.35,0) * (in2 >> 16)) >> 1)+(out1 >> 1);

mixedpoint out3 =
((mixedpoint::constant( 0x999a, -18, 0.15, 0) * (in3 >> 16)) >> 2) + out2;

VII. Mixed-Point C++ Class
The mixed-point class is intended to be used to compare a fixed-point implementation of a computation with

the same computation performed using floating-point values. As a computation is performed using the mixed-
point data type, both a fixed-point value and a floating-point value are computed for every mathematical operation
performed.

A. Mixed-Point Data
Each mixed-point variable carries the following information:
• An integral value: I .
• A value for the exponent of the fixed-point scaling factor (an integer): e.
• A long double-precision truncation error value: t .
• A double-precision floating-point value: R.
The mixed-point class currently has no notion of word length. Values of algorithms implemented with limited

word length will be found in the least significant bits of mixed-point values, so overflow errors caused by reduced
word length will not be modeled correctly.

Accessor functions are provided for the values of I , t , R and I · 2e (which is the real value mapped to by the
fixed-point representation.)

Most of the mathematical operators have been overloaded to work with the mixed-point class. The exceptions are
“/=”, “/”, “%”, “%=”, “++” and “- -”. The shift operators have all been overloaded, and are interpreted as adding
and removing sign bits. The function mixedpoint::ldexp( const mixedpoint&, int ) is provided
for manipulating the scaling factor exponent, similar to the ldexp function defined in the C language.12

In normal use equation 2 will hold. This equation is only an approximation because both t and R are subject to
their own truncation errors, most likely at different resolutions.

R ≈ (
I · 2e

) + t (2)

B. Truncation Error
Right shift operations are the only source of truncation error at runtime. Any time a right-shift operation is

performed, the bits which will be shifted out of the word are extracted into a floating-point value, multiplied by
the scaling factor and added to any existing truncation error already held by the variable. These values give us very
accurate (up to the precision of a double floating-point value) information about actual run-time truncation error
encountered by the fixed-point implementation.

Constant values can be a source of design-time truncation error. Constants are declared by providing the integer
(I ) and scaling-factor exponent (e), along with a double-precision value (R). Truncation error is computed in the
mixed-point constant constructor as the difference between R and I · 2e. Note that is truncation error is design time
truncation error – not run time truncation error.
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C. Use of the Mixed-Point Implementation
Mixed-point implementations have been used for the purpose of debugging and evaluating fixed-point algorithm

implementations generated by SIFOpt.

VIII. Results
SIFOpt has been used to create fixed-point implementations of many algorithms. A few of the interesting results

are presented here. Each algorithm was actually implemented in C++ using the mixed-point class described earlier,
along with additional “instrumentation” to collect maximum and minimum values and run time truncation error
amounts. The tests were run on a system with 32 bit integer values, and in most cases (exceptions noted) SIFOpt
was set to allow the integer values to grow that large.

There are two measures of interest in gauging the quality of a fixed-point implementation of a computation as
determined by SIFOpt. First is the question of whether the fixed-point implementation utilizes the full range of bits
for each computed value when truncation occurs. Second is how closely the truncation error estimate is to actual run
time truncation error amounts.

A. 8-Weight Convolution
Several 8-weight convolutions were implemented with a variety of weight distributions, but always with the weight

values summing to 1.0. The frequency responses of the resulting filters were computed, and “rail-to-rail” inputs for a
variety of the frequency responses were used to test the fixed-point implementations. The input values were encoded
as 16-bit values.

Several implementations, differing in internal data path widths, were created: 32-bit internal data paths, 32-bit
multiplication results reduced to 16 bits post-multiply and 16-bit internal data paths (multiplications have 16-bit
arguments and 16-bit results.)

In each case, the implementation generated by SIFOpt used the full range of bits for each computed value – at
least for signals of a frequency that should be “passed”.

Implementations having a 32-bit internal data path (hence requiring very few truncations of bits) had truncation
error closely matching the estimates computed by SIFOpt. In the other cases, SIFOpt’s estimates were pessimistic
by several orders of magnitude.

(Note that there are no static leaf dependencies for any of the computed values, so the exhaustive value range
computation method is not applicable to this computation.)

B. Division by Repeated Multiplications
The division by repeated multiplications algorithm7 was implemented to check the accuracy of an 8-bit by 8-bit

division with just eight numerator computations. The computation tree has static dependencies between the leaves of
some computed values. Before the exhaustive value range computation was implemented the designer had to identify
computed values for which SIFOpt incorrectly determined value ranges. These nodes were easily identified due to
known characteristics of the computation, and protection of the computations using the NC() function resulted in
fixed-point implementations which used the full range of bits for each computed value. The exhaustive computation
of value ranges eliminates the need for the designer to protect any computations with NC() functions, and results in
an improved fixed-point implementation at the nineth numerator computation and beyond.

After the third numerator computation in the algorithm, large numbers of bits begin to be truncated. Up to that
point in the computation, SIFOpt’s absolute error estimation tracked with run time truncation amounts. Beyond that
point, the error estimation and run time error amounts began to diverge. Figure 7 displays the divergence between the
estimated truncation error values computed by SIFOpt and actual truncation error amounts observed at runtime.

C. Goertzel’s Fourier Transform Algorithm
The challenge with implementing Goertzel’s Fourier Transform algorithm was that the computation has feedback

from the output to the inputs. Because SIFOpt requires us to provide an SIF for each input, we had to determine an
SIF to use as a starting point. This was achieved by implementing the computation in a floating-point environment
and running the computation on sample data sets. The resulting maximum magnitude value was then used to fix an
SIF for the algorithm inputs and SIFOpt was used to generate a fixed-point implementation with this information.
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Fig. 7 Graph of the truncation error estimated by SIFOpt versus runtime observed error for each iteration of the
division by repeated multiplications computation.

Special care had to be taken to ensure that the scaling factor of the resulting output matched the scaling factor of
the feedback values. In addition, because the initial calculation of a value range for the outputs was performed with
floating-point values, we took special care to check that the fixed-point implementation was not subject to significant
truncation error which would push the result values out of that computed range.

Due to the fact that we pre-computed the maximum feedback value using datasets that matched our testing and the
very short computation performed, the fixed-point implementation was virtually guaranteed to have little truncation
error and to use the full range of bits. The interesting part of this example was having to deal with a loop in the
computation tree.

IX. Conclusions
We have created a software tool to evaluate our static analysis based methodology for creating fixed-point imple-

mentations of computations. This tool has been used effectively to create fixed-point implementations of computations
for our project. We have demonstrated applications including FIR filtering, division by repeated multiplications, and
discrete Fourier transform algorithms. In each case, we were able to use our tool to create a fixed-point implementation
in which runtime values utilize the full range of integer bit positions.

Our methodology for estimating truncation error has proved to be fairly inaccurate when large numbers of
truncations occur. The estimates can be much larger than are possible during run time. We believe that the estimates
can be used to compare different implementations of a computation, but the estimates cannot be relied upon to give
a true indication of the magnitude of truncation error caused by the fixed-point implementation.

We intend to work on methods for noting run time dependencies between input values which will result in loss of
precision, and to add methods for dealing with decision-making algorithmic structures in the near future.
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